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Abstract

Array comparative genomic hybridization (aCGH) provides a high-resolution and high-throughput

technique for screening of copy number variations (CNVs) within the entire genome. This

technique, compared to the conventional CGH, significantly improves the identification of

chromosomal abnormalities. However, due to the random noise inherited in the imaging and

hybridization process, identifying statistically significant DNA copy number changes in aCGH

data is challenging. We propose a novel approach that uses the mean and variance change point

model (MVCM) to detect CNVs or breakpoints in aCGH data sets. We derive an approximate p-

value for the test statistic and also give the estimate of the locus of the DNA copy number change.

We carry out simulation studies to evaluate the accuracy of the estimate and the p-value

formulation. These simulation results show that the approach is effective in identifying copy

number changes. The approach is also tested on fibroblast cancer cell line data, breast tumor cell

line data, and breast cancer cell line aCGH data sets that are publicly available. Changes that have

not been identified by the circular binary segmentation (CBS) method but are biologically verified

are detected by our approach on these cell lines with higher sensitivity and specificity than CBS.
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1 Introduction

Cancer development and genetic disorders often result in chromosomal DNA copy number

changes. The conventional comparative genomic hybridization (CGH) technique [1] has

proved to be useful in producing a map of DNA sequence copy number at chromosomal

DNA locations. The modification of conventional CGH using microarrays is called array

CGH (aCGH). This technology offers high resolution and is useful for genome-wide studies
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of copy number change [2]. It is known that some forms of cancer are caused by somatic or

inherited mutations in oncogenes and tumor suppressor genes [3]. Therefore, identification

of these genes will (at least partially) facilitate the development of medical diagnostic tools

and treatment regimes for cancer and other genetic diseases. In aCGH experiments,

differentially labeled sample and reference DNA are hybridized to DNA microarrays ([2],

[4]) and the ratios of the fluorescence intensities of the test and reference samples (usually

denoted by T/R) on biomarkers along the chromosome are obtained as aCGH profiles [5].

Since the reference sample is assumed or chosen to have no copy number changes, markers

whose normalized test sample intensities are significantly higher (or lower) than the

normalized reference sample intensities correspond to DNA copy number gains (or losses)

in the test sample at those locations ([2], [4], [6]). Because of the imaging and hybridization

noise, the detection of copy number changes in aCGH data becomes challenging.

Consequently, a statistical analysis of aCGH data, usually in the form of log2 T/R, for copy

number changes is needed for detecting significant copy number change positions.

Several approaches exist for the study of copy number changes using aCGH data. The copy

number alterations in mouse islet carcinomas were studied using aCGH technique in [7] and

the resulting aCGH data were analyzed for DNA copy number changes by a finite Gaussian

mixture model with three components (a “no change” component, a “loss” component, and a

“gain” component). The parameters of the mixture Gaussian model include the proportion of

each component, the mean, and the variance of each component. The estimation of these

model parameters was carried out by two steps: the visual estimation and the least squares

estimation. However, the significance of their findings has not been accessed statistically.

To study DNA copy number change in breast tumors and breast cancer cell lines, an aCGH

data set was obtained [8] and analyzed by pairwise t-tests for classes of genes, correlation

coefficients between DNA copy number and mRNA level, and linear regression model

among the tumors. A threshold analysis method to identify DNA copy number changes

based on aCGH data was also proposed [9]. However, there was a lack of statistical

assessment of such thresholds. Another method called representational oligonucleotide

microarray analysis (ROMA) was developed [10], for the detection of copy number

aberrations in cancer and normal humans. Profiles of a primary breast cancer sample

(CHTN159) and a breast cancer cell line compared with a normal male reference (SK-BR-3)

were obtained using ROMA and the mean ratios of the profiles were analyzed for the

detection of DNA copy number changes. A practical software solution to the analysis of

DNA copy number data using the Matlab toolbox, CGH-Plotter, was provided in [11]. The

CGH-Plotter is a three-stage procedure that includes filtering, k-means clustering, and

dynamic programming. A method called Chromosomal Aberration Region Miner (CHARM)

was proposed [5] to identify segmental aneuploidies in gene expression and aCGH data.

Recently, the single nucleotide polymorphism (SNP) array analysis was also used to study

copy number changes in primary human lung carcinoma specimens and cell lines [12] in

which the hidden Markov model (HMM) was applied to the SNP data and copy number

changes that are vital to the development of lung cancer were identified. An unsupervised

HMM approach was implemented in [13] to map the clones into states, which represent the

underlying copy number of the group of clones, and therefore, possible copy number

changes were identified. The Adaptive Weights Smoothing (AWS) procedure was
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introduced in [14] to estimate copy number gains and losses on simulated data and some

publicly available reference aCGH data sets. This approach provided better estimations on

the changes with an optimal choice of the parameters in the algorithm [14]. However, the

choice of the optimal parameters was either empirical or through other extensive

computational algorithms, and this feature of the AWS procedure made it impractical for

application. Picard et al. [15] proposed a method for obtaining the maximum likelihood

estimates of the breakpoints, the mean and variance of the segments for a given number of

segments, and an adaptive criterion to estimate the number of segments in aCGH data. It

was an alternative to the estimation of DNA copy number changes but there was no

statistical assessment (in terms of p-value) on how good their estimation was.

Although the aforementioned studies used some statistical estimation methods in analyzing

aCGH data and gene expression data for copy number changes, the validation of those

methods is not completely satisfactory. Several methods mentioned above were compared in

[16], and it was shown in [16] that the comparisons of these methods are difficult due to a

possibly suboptimal choice of parameters in these methods. Nevertheless, such comparisons

reveal general characteristics [16] that are helpful to the biological investigator who needs to

analyze copy number changes. It is concluded in [16] that a statistical analysis of copy

number changes should essentially address two important points: One is how to estimate the

loci, where the DNA copy number has changed, and the other is how good the estimation is

in terms of giving the probability of an observed significance (or simply the p-value) for the

estimated locus of a change. Therefore, in our opinion, an appropriate statistical change

point model ([17]) is most suitable for analyzing DNA copy number data. From statistical

point of view, a change point is defined as a point (either an index or a spatial location)

before which a random sequence follows a distribution with certain parameter(s)), and after

which the random sequence follows another distribution (or the same distribution as before

but with different parameter(s)). Statistical change point analysis can be rooted back to the

1950s [18]. A Bayesian estimator of the current mean for a priori uniform distribution on the

whole real line was derived in [19] with a quadratic loss function. The exact and asymptotic

distribution of the test statistic for testing a single change in the mean of a sequence of

normal random variables was obtained in [20]. The null distributions in the cases of known

and unknown variances of a single change in the mean were derived as well [21]. The mean

and variance change point problem for normal distributions was first studied in [22]. The

asymptotic null distribution of the likelihood procedure statistic [23] for the simultaneous

change in the mean vector and covariance of a sequence of normal random vectors was

studied in [24]. Other works related to change point(s) problem(s) can be found in the

literature of statistical change point analysis [25], [26], [27], [28], [29], [30], [31], [32].

A mean change point model (MCM) was recently applied [33] to detect DNA copy number

changes that were observed in the gene expression experiment on Dermatofibrosarcoma

Protuberans. A circular binary segmentation (CBS) method was later proposed [6] to

identify DNA copy number changes in aCGH data based on the MCM proposed in [20]. The

CBS approach [6] is among a few methods that gives both the estimation of the locus, where

the copy number change takes place, and the p-value of the significance of the finding. The

p-value in [6], however, is only obtained by a permutation method and takes a long

computation time when the sequence is long (which is the case for high-density array data).
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Hence, the method in [6] has the slowest computational speed [15]. A recent result in [34]

has improved the computational speed of CBS. A Bayesian HMM approach was proposed

for the analysis of aCGH data using extensive computational techniques [35]. Most recently,

a computational approach using a Bayesian segmentation modeling of aCGH data was

introduced, aiming at giving good estimation and confidence intervals of the DNA

aberration regions [36].

In this paper, we propose to use a different approach, the MVCM ([22], [29]), for the

detection of DNA copy number changes in aCGH and gene expression data. Our proposed

approach emphasizes both estimation and hypothesis testing regarding the change point(s) in

the DNA copy number data. Our MVCM approach allows researchers to do both a genome-

wide search [41] for copy number changes and a chromosome-wide search for copy number

changes. We also compare our model with the CBS method in [6]. As pointed out in [16],

there are basically two types of methods for analyzing aCGH copy number data: One is the

estimation-oriented approach and the other is the statistical inference approach, which

emphasizes both the estimation and the significance of the detected change. Our method and

the CBS method [6] fall into the second category. Among a number of different methods, we

just compared the proposed MVCM with the MCM of [6] because they are more

methodologically comparable. Our results showed that by adding the variance component in

the change parameter, we can detect copy number changes with fewer false positives, and

we can directly use the p-value formula to approximate the statistical significance of the

detected copy number changes with ease. That is, our model outperforms the CBS and gives

a faster computation of the approximate p-value for the change identified without going

through time-consuming permutation calculation in [6] and [34].

2 The Multiple Mean and Variance Change Point Model for aCGH Data

In the aCGH data, log2 T/R = 0 indicates no copy number change at that locus while log2

T/R < 0 (or > 0) signifies a deletion (or duplication) in the test sample at that locus.

However, due to various random noise, which occurs largely during the experimental and

image processing stages, the log2 T/R becomes a random variable. Ideally, this random

variable is assumed to follow a Gaussian distribution of mean 0 and constant variance σ2.

Then, deviations from the constant parameters (mean and variance) presented in log2 T/R

data may indicate a copy number change. Hence, the key to identifying true DNA copy

number changes (breakpoints) becomes the problem of how to identify multiple changes

(breakpoints) in the parameters of a normal distribution based on the observed sequence of

log2 T/R.

Let Xi denote the normalized log2 Ti/Ri at the ith locus along the chromosome, then {Xi} is

considered to be a sequence of normal random variables taken from ,

respectively, for i = 1; …; n ([6], [7]). Typically, the DNA copy number changes were

analyzed using the MCM ([6], [33]) with a fixed variance in the distributions of the

sequence {Xi}. Since the aCGH technology may not guarantee the aCGH data to have a

constant variance [7] due to some uncontrollable errors during hybridization and because of

the mean and variance change observed in the aCGH data of SK-BR-3 (see Fig. 6 and [10]),
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we therefore propose to analyze the DNA copy number changes using the MVCM for the

sequence {Xi}.

The multiple DNA copy number changes can be defined as testing the null hypothesis in the

mean and variance parameters in the sequence of log intensity ratios {Xi}:

(1)

versus the alternative:

(2)

where μ and σ2 are the unknown common mean and variance under the null hypothesis (1);

1 < k1 < k2 < … < kq < n; q is the unknown number of change points and k1, k2, … kq are the

unknown change points’ positions (loci), respectively, under the alternative hypothesis (2).

The null hypothesis (1) refers to the claim that there are no changes in the mean and

variance parameters of the distribution from which the sequence {Xi} is drawn, and the

alternative hypothesis (2) indicates that there are several changes (q changes) in the mean

and variance parameters.

2.1 A Binary Segmentation Procedure for Searching Multiple Change Points

For detecting multiple change points, an effective method ([20], [17]) is the binary

segmentation procedure (BSP) proposed in [37]. It searches the first significant change point

in a sequence, then breaks the original sequence into two subsequences: one before the first

significant change point (including the change point) and the other after the first significant

change point. Thereafter, the procedure tests the two subsequences separately for a change

point. The process is repeated until no further subsequences have change points. The

collection of change point locations found at the end is denoted by  and the

estimated total number of points is consequently q.

Using this BSP, we just need to focus on how to detect the single change (the most

significant one) each time and repeat the searching scheme of BSP to get all the significant

changes. Specifically, to identify all significant DNA copy number changes in the MVCM

as specified in (1) and (2), we first turn to the searching of a single change by testing the null

hypothesis (1) versus the following new alternative hypothesis:

(3)

where k, 1 < k < n, is the unknown position of the single change at each stage. The strategy

is to convert the testing of multiple change points in the MVCM given by (1) and (2) into

several stages of hypothesis testing of (1) versus the single change point hypothesis (3) in

the MVCM. At each stage, failure to the rejection of H0 (1) at a given significance level α
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indicates no change in the DNA copy number sequence and then the search scheme stops at

this stage. The rejection of H0 (1) or acceptance of the alternative hypothesis (3) at a given

significance level α at certain stage indicates that a significant change in the DNA copy

number sequence is found and the search scheme of BSP continues to the next stage until no

more significant changes are found in a later stage. The key for testing the null hypothesis

(1) versus the alternative (or research) hypothesis (3) is to obtain a test statistic and its null

distribution. This will be discussed in the next section.

2.2 The Schwarz Information Criterion and the Test Statistic

We use the Schwarz information criterion (SIC)-based approach [38], proposed in [29], to

test (1) against (3). In general, SIC is defined as

where  is the maximum likelihood function of a model, k is the number of parameters

to be estimated, and n is the sample size. The information criterion principle for model

selection is to choose the model with minimal SIC as the best possible model. The SIC

approach is a likelihood-based approach with the penalty term added for possible model

overparameterization [29]. It converts hypothesis testing into a model selection process in

which the null hypothesis H0 in (1) corresponds to a model of no change in the sequence and

the alternative hypothesis H1 in (3) corresponds to models with change locations specified in

each model. Specifically, due to the requirement for the existence of the maximum

likelihood estimator (MLE) of the variance component, we can only detect changes located

from the 2nd to the (n − 1)th in the sequence {Xi}. Therefore, the alternative hypothesis H1

in (3) actually corresponds to n − 3 change point models with change located at 2, …, n − 2,

respectively.

The SIC corresponding to the no change model specified by H0, denoted by SIC(n), is

obtained as ([29]):

(4)

where  is the maximum likelihood function with respect to H0, and  and  are

the MLEs of μ and σ2 under H0, respectively, which are found to be:

Corresponding to H1, there are n − 3 change point models, and the SIC for each model,

denoted by SIC(k) for fixed k, 2 ≤ k ≤ n − 2, is obtained as:
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(5)

where  is the maximum likelihood function under H1, and

are the MLEs for μ1, , μn, and , respectively.

According to the principle of information criterion, if SIC(n) < min2≤k−2SIC(k), there is no

change in the sequence. Otherwise, there is a change in the sequence and the change point

position k is estimated by  such that

(6)

Using this method, the change is easily located. The algorithm is fast in identifying change

point estimates.

Due to random disturbance during the process of aCGH experiments, aCGH data do contain

fluctuations that may not indicate a copy number change. To address this issue, Chen and

Gupta [28] proposed to view

as a statistic, and hence, used the null distribution of Δn to make formal inference decision

regarding H0 given by (1) versus H1 given by (3). The exact null distribution of Δn still

remains unknown so far. However, the asymptotic null distribution of a function of Δn is

([22], [29])

where a(log n) = (2 log log n)1/2 and b(log n) = 2 log log n + log log log n. Using the above

asymptotic null distribution, we can then obtain an approximate p-value for testing H0 given

by (1) versus H1 given by (3). Specifically, the approximate p-value for rejecting the null

hypothesis H0 given by (1) in favor of H1 given by (3) (hence, estimating the change

location as  is obtained as
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(7)

where

Equation (7) above gives the analytic formula for calculating the approximate p-value of the

test of “no change” versus “one change.” This p-value is the observed significance of the

test based on the observed sample information. When this p-value is less than a prespecified

significance level α, the null hypothesis of “no change” is rejected.

As mentioned before, in order for the MLE to exist, we only detect changes located from the

2nd to the (n − 1)th position in the sequence {Xi}. This requirement helps to avoid the edge

effect of the CBS algorithm discussed in [6]. We summarize our proposed MVCM approach

into five steps. As a note, our approach handles the edge effect as stated in step 5 below.

The Algorithm of the MVCM Approach:

1. Calculate the SIC(n) and SIC(k) according to (4) and (5), respectively, for the

whole sequence.

2. Obtain the estimate , denoted by , of the locus, where the DNA copy number has

possibly changed according to (6).

3. Calculate the p-value according to (7). If the p-value is less than a prespecified

significance level α at  obtained in step 2, then  is the first significant change

identified and go to step 4; otherwise, there is no significant copy number change in

the sequence and the search stops here.

4. Break the original sequence at  into two subsequences: the first sequence includes

the first through the th observations of the original sequence and the second

sequence contains the rest of the observations starting from the  observation.

Repeat steps 1-3 for each of the two subsequences until no further changes are

found.

5. For the first and last observations (boundary points) in the sequence of {Xi}, we do

a final check by first calculating a 99.7 percent confidence interval,

for the first piece of the sequence, and a 99.7 percent confidence interval,
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for the second piece of the sequence. If X1 ∈ I1, the first observation is a change;

otherwise, it is not. Similarly, if Xn ∈ I2, the last observation is a change; otherwise,

it is not.

3 Simulation Studies

The approximate p-value given by (7) becomes more precise when the size of the whole

sequence is large enough as it is derived from the limiting null distribution (see Section 2).

To ensure that the approximate p-value obtained through the asymptotic null distribution is

good enough for finite sample sizes, we performed several simulations for moderate sample

size n (the whole sequence size) of 30, 40, 50, and 60 for the scenarios of the true change

being located at the front (the 10th observation in the sequence), at the center (the  th

observation), and at the end (the (n-7)th observation) of the sequence. Using aCGH data on

the fibroblast cell lines [39] as benchmark data sets, we observed that the segments before

and after a detected change point mostly have mean difference ranging from 0.36 to 0.7 (or

larger), a standard deviation difference ranging mostly from 0.05 to 0.2, and a coefficient of

variation  ranging from 9 to 15,031. We therefore investigated the cases

when the mean, the standard deviation, and the CV are within the above-mentioned ranges.

Specifically, we simulated a normal sequence that is with mean 0 and standard deviation

0.05 before the change point and is of values δi after the change points, respectively, for i =

1, … 9, where δi = (μi, σi) takes

and (0.48, 0.2), for i = 1, …, 9. These choices of δi result in an increasing order of CV: 30,

32, 33, 35, 36, 37, 39, 40, and 42. Each simulation is carried out 1,000 times. The relative

frequency f1 that  equals the true change location and the relative frequency f2 that the p-

value is less than 0.01 at  are summarized in Table 1.

The simulations indicate that the proposed method can pick up changes in the center or at

the end of the sequence with very high powers (at least 96 percent), even when the sample

size is moderate; and the power increases as the sample size increases. When the change is

located at the beginning of the sequence and the sample size is 30, the power of the method

is low (from 47 to 70.7 percent). However, when the sample size increases, the power of

detecting a change at the beginning of the sequence increases dramatically (up to 99.9

percent). As the aCGH data are usually of large sample sizes, the proposed method can

confidently be applied to the identification of DNA copy number changes.

4 Applications to aCGH Data

We have used our proposed method to analyze several publicly available array CGH data

sets.
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4.1 Analysis of 15 Fibroblast Cell Lines

In Snijders et al. [39], aCGH experiments were performed on 15 fibroblast cell lines and the

normalized averages of the log2 Ti/Ri (based on triplicate) along positions on each

chromosome were available at the fibroblast cell lines data Web site [40]. There were either

one or two alterations in each of the 15 cell lines as indicated by karyotyping [6]. As pointed

out before, our method allows us to do both a genome-wide search [41] for copy number

changes and a chromosome-wide search for copy number changes. For the nine cell lines

(GM01524, GM01535, GM01750, GM03134, GM03563, GM05296, GM07081, GM13031,

and GM13330), as changes occur within a particular chromosome, we did a chromosome-

wide search for copy number changes for each of the 23 chromosomes within each cell line

using our method. As the number of changes is unknown, we did not control the multiple

comparison error but we preset the significance level σ to a small value such as 0.01 and

0.001 (just like the ones used in [6]). Our approach identified significant changes in the log

ratios for each of the cell lines; and the locations of the changes along with their

corresponding p-values were listed in Table 2.

It turned out that our method can identify the changes with fewer false positives compared to

the CBS method [6]. Furthermore, the changes identified by our MVCM method match with

the copy number variations found through the spectral karyotyping (see [39, Table 1] for the

karyotyping results). The findings of our method, the MVCM with BSP, and the MCM with

CBS were given in Table 3 for comparison purpose. It should be noted that, in Table 3,

“Yes” means the change was found by the specific method (MCM with CBS or MVCM

with BSP) for the known alteration verified by spectral karyotyping in (Snijders et al. [39])

on the specific chromosome in the cell line at the given α level; “No” means the change was

not found by a specific method, but was identified by spectral kayotyping; and “Number of

false positives” gives the number of changes found by the specific method for a cell line

while there were no known alterations actually found by spectral karyotyping [6].

Further, we have calculated the specificity (where specificity = number of true negatives/

(number of true negatives) number of false positives)) and sensitivity (where sensitivity =

number of true positives/(number of true positives) number of false negatives)) for all cases.

The specificities and sensitivities were also given in Table 3. Graphical illustration of the

change detected by our method for chromosome 5 of GM01535 is given in Fig. 1 and the

associated SIC values for this chromosome are given in Fig. 2. The red arrow in Fig. 2

denotes the significant minimum SIC value occurring at locus 86 and that location then

corresponds to the red circled observation in Fig. 1 indicating the change point. We also

illustrated the changes identified on chromosome 10 of GM05296 in Fig. 3. In light of

Tables 2 and 3, we can conclude that our proposed method performed better than the CBS of

[6] in terms of a smaller false positive rate, a higher sensitivity, and a higher specificity.

We also did a genome-wide search for copy number change on the six cell lines: GM00143,

GM02948, GM03576, GM04435, GM07408, and GM10315, whose changes are known to

be on a whole chromosome arm [6, 36] by spectral karyotyping and these changes could not

be detected by the CBS method provided in [6]. In this case, we can still use the proposed

method to search for DNA copy number changes based on the genome data (23
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chromosomes altogether). Our findings on these six cell lines are summarized in Table 4.

Specifically, we identified changes on the whole arm of chromosome 18 of the cell line

GM00143 (see Fig. 4), on the whole arm of chromosome 13 of cell line GM02948, on the

whole arm of chromosome 20 of GM07408, on the whole arm of chromosome 22 of

GM10315, on the whole arm of chromosome 2 of GM03576, and on the whole arm of

chromosome 16 of GM04435 (see Table 4).

These discoveries are in line with the results of spectral karyotyping [39]. We missed one

change on GM03576, GM04425, and GM07408, respectively. Overall, the proposed method

is more effective in searching for DNA copy number changes than the compatible CBS

method. The proposed method can do a chromosome-wide or genome-wide search for DNA

copy number changes.

4.2 Analysis of aCGH Data of Two Breast Tumors

Snijders et al. [39] also used aCGH to detect DNA copy number gains, losses, and

amplifications for two breast tumors noted as S0034 and S1514. They found low-level gains

and losses on both tumors, as well as high-level amplifications in both tumors. Using the

proposed method for breast tumor S0034, we identified low-level gains and losses (with p-

value < 0.001) on chromosome 1, end of chromosome 2, on chromosomes 7 and 8, and the

high-level amplification on the whole arm of chromosome 23 (the X chromosome) with a p-

value of 0.0000. For breast tumor S1514, we identified low-level gains and losses

(significant with p-value < 0.001) changes on chromosomes 3 and 4, at the end of

chromosomes 5 and 13, and at the beginning of chromosome 15. We also identified the

high-level amplification on chromosome 20 with p-value of 0.0000 (see Fig. 5). All of our

findings on these two breast tumor cell lines are consistent with the conclusions validated

with karyotyping in Snijders et al. [39]. We missed only two changes on each tumor in this

analysis. These false negatives are due to the fact that the segment at which the changes are

located is short and the approximate p-values are not significant enough.

4.3 Analysis of aCGH Data of a Breast Cancer Cell Line

Lucito et al. [10] developed the ROMA method for the detection of DNA copy number

changes in cancer and normal humans. They assembled three ROMA data sets, namely

CHTN159, SK-BR-3, and Pygmy, at 10,000 and 85,000 resolution. We analyzed the ROMA

data (see Web site [42]), SK-BR-3, which is a breast cancer cell line compared with a

normal reference. We identified changes on the highly turbulent chromosome 8 [9], and

changes on the somewhat less active chromosomes 5, 17, and X as specified in [9]. Changes

on the other 19 chromosomes of this breast cancer cell line were also identified (see Fig. 6

for chromosome X of SK-BR-3). All changes on these chromosomes of SK-BR-3 were

validated using a “representation”-based experiment in [10]. Moreover, the gains and losses

of DNA copy numbers on several chromosomes of SK-BR-3 (for example, see Fig. 6)

indicate that the mean and variance of the log ratios have been changed. This observation

further justifies the appropriateness of using MVCM.
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5 Discussion and Conclusion

In this paper, we propose to use the MVCM approach to study the DNA copy number

changes in aCGH data sets. The approximate p-value of identifying a change using SIC

method is given and the procedure to detect all changes in the data is carried out using BSP.

The advantage of using the MVCM model is that it leads to fewer change points than that of

MCM as MCM tends to divide large segments into smaller pieces so that the homogenous

variance assumption for all segments can be met ([15]). Therefore, the MVCM model has

the potential to give fewer false positives than MCM. Adding the variance component in the

change point analysis will improve the estimation of the change point location even if just

the mean shifts greatly. This is because in the MVCM model, the variances under the

alternative hypothesis are estimated for each subsequence without pooling all subsequences

(with possible different means) together, while in MCM, the homogeneous variance under

the alternative hypothesis is estimated by pooling all subsequences having different means

together. Depending on the test statistic used under each model, the false negative rate needs

to be assessed for each model when one decides which model to use for the aCGH data at

hand (see the simulation results in Section 3). Using either MVCM or MCM also depends

on the biological experiment in which the scientists may have prior knowledge on whether

there are potential variance changes. In that case, the MVCM model is proposed as an

alternative to MCM when possible variance changes exist in the sequence.

Simulation studies and applications of the proposed method on aCGH data sets of several

cell lines indicate that the proposed method has very high power (or low false negative) in

identifying DNA copy number changes. For a change in a shorter sequence (small n) of a

chromosome, the SIC value can indicate the position of the change although the

corresponding p-value may not be significant. This is due to the fact that the sample size of

that segment is small and the p-value is calculated based on large sample property. This is

the only limitation of our method. However, this limitation can be overcome by finding the

p-value using simulation on a permutation method, which will be explored in the future.

Furthermore, the confidence intervals given at the end of Section 2 can be used to identify

any changes in the boundaries.
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Fig. 1.
Chromosome 5 of the fibroblast cell line GM01535 [39]: In all figures, a red circle indicates

a significant DNA copy number change point such that the segment before this red circle

(inclusive of the red circle) is different from the successor segment after the red circle

(exclusive of the red circle).
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Fig. 2.
SIC plot for chromosome 5 of the fibroblast cell line GM01535 [39].
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Fig. 3.
Chromosome 10 of the fibroblast cell line GM05296 [39].
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Fig. 4.
Genome of the fibroblast cell line GM00143 [39].
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Fig. 5.
Genome of the breast tumor S1514 [39].
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Fig. 6.
Chromosome X of the breast cancer cell line SK-BR-3 [10].
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TABLE

Loci of the Copy Number Changes Found Using MVCM in the Nine Fibroblast Cell Lines [39]

Cell line/Chromosome locus p-value (x
‒

, s) in each segment

GMO1524/6 49th 2.3724 × 10−4 (0.0006, 0.0923) (0.3600,0.2643)

GM01535/5 86th 1.7252 × 10−5 (0.0068, 0.0709) (0.4335, 0.1058)

GMO 1750/9 24th 2.5317 × 10−5 (0.3966, 0.1159) (−0.0155, 0.0996)

GMO 1750/14 11th 5.6560 × 10−5 (.4886, 0.0694) (0.0220, 0.0790)

GM03134/8 95th 2.0743 × 10−6 (−0.0128, 0.0903) (−0.2241, 0.4726)

GM03563/3 39th 1.9396 × 10−5 (0.0052, 0.1251) (0.4944, 0.1034)

GM03563/9 2nd 3.9577 × 10−5 (−0.9156, 0.0150) (−0.0228, 0.0810)

GM05296/10 53rd 1.0229 × 10−5

94th 1.0018 × 10−5 (−0.0165, 0.0527) (0.5002, 0.0886) (−0.0076, 0.0631)

GM05296/11 51st 1.8824 × 10−5

67th 2.1324 × 10−6 (0.0121, 0.0735) (−0.6159, 0.2224) (0.0180, 0.0738)

GM07081/7 69th 3.9350 × 10−8 (0.4553, 0.1407) (0.0061, 0.0776)

GM13031/17 55th 9.9718 × 10−4

64th 3.4882 × 10−3 (0.0339, 0.0798) (−0.5008, 0.2673) (0.0437, 0.1566)

GM13330/1 82nd 2.0249 × 10−7 (0.0180, 0.0901) (0.5179, 0.1255)

GM13330/4 150th 6.4653 × 10−9 (−0.0687, 0.0969) (−0.8389, 0.0655)

In table, the loci of significant changes found by our approach are listed along with their p-values. In the last column of the table, we list the sample
mean and sample standard deviation before and after the locus of the change, and the sample mean  is listed as the first number in the parenthesis

and the sample standard deviation s is the second number in the parenthesis for each segment.
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TABLE 3

Comparison of the Changes Found Using MCM and MVCM on the Nine Fibroblast Cell Lines [39]

Cell line/Chromosome MCM with CBS
α = 0.01

of Olshen et al.
α = 0.001

MVCM with BSP
α = 0.01

of Chen and Wang
α = 0.001

GMO 1524/6 Yes Yes Yes Yes

Number of false positives 6 2 0 0

Specificity 72.7% 90.9% 100% 100%

Sensitivity 100% 100% 100% 100%

GMO 1535/5 Yes Yes Yes Yes

GM01535/12 No No No No

Number of false positives 2 0 1 1

Specificity 90.5% 100% 95.2% 95.2%

Sensitivity 50% 50% 50% 50%

GMO 1750/9 Yes Yes Yes Yes

GMO 1750/14 Yes Yes Yes Yes

Number of false positives 1 0 0 0

Specificity 95.2% 100% 100% 100%

Sensitivity 100% 100% 100% 100%

GM03134/8 Yes Yes Yes Yes

Number of false positives 3 1 1 0

Specificity 86.4% 95.5% 95.5% 100%

Sensitivity 100% 100% 100% 100%

GM03563/3 Yes Yes Yes Yes

GM03563/9 No No Yes Yes

Number of false positives 8 5 0 0

Specificity 61.9% 76.2% 100% 100%

Sensitivity 50% 50% 100% 100%

GM05296/10 Yes Yes Yes Yes

GM05296/11 Yes Yes Yes Yes

Number of false positives 3 0 1 0

Specificity 88% 100% 96% 100%

Sensitivity 100% 100% 100% 100%

GM07081/7 Yes Yes Yes Yes

GM07081/15 No No No No

Number of false positives 1 0 0 0

Specificity 95.2% 100% 100% 100%

Sensitivity 50% 50% 50% 50%

GM13031/17 Yes Yes Yes Yes

Number of false positives 5 3 1 1
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Cell line/Chromosome MCM with CBS
α = 0.01

of Olshen et al.
α = 0.001

MVCM with BSP
α = 0.01

of Chen and Wang
α = 0.001

Specificity 79.2% 87.5% 95.8% 95.8%

Sensitivity 100% 100% 100% 100%

GM13330/1 Yes Yes Yes Yes

GM13330/4 Yes Yes Yes Yes

Number of false positives 8 5 0 0

Specificity 61.9% 76.2% 100% 100%

Sensitivity 100% 100% 100% 100%
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TABLE 4

Copy Number Changes Found Using MVCM on the Genome of the Other Six Fibroblast Cell Lines [39

Cell line/Chrom. change Cell line/Chrom. change

GM00143/18 Yes GM02948/13 Yes

Number of false positives 1 Number of false positives 0

Specificity 87.5% Specificity 100%

Sensitivity 100% Sensitivity 100%

GM07408/20 Yes GM10315/22 Yes

Number of false positives 1 Number of false positives 0

Specificity 75% Specificity 100%

Sensitivity 100% Sensitivity 100%

GM03576/2 Yes GM04435/16 Yes

GM03 576/21 No GM04435/21 No

Number of false positives 1 Number of false positives 1

Specificity 75% Specificity 83.3%

Sensitivity 50% Sensitivity 50%

The notations are the same as in Table 3 and the significance level is 0.001.
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